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Radical fluoroarylation in radiochemical synthesis
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Abstract

In this study, we report on the radical [18F]fluoroarylation of different olefins using 4-[18F]fluorobenzenediazonium ions to provide a
new route to radiopharmaceuticals containing a deactivated, 4-[18F]fluoro substituted phenyl group. This new methodology was shown
to be well suited for the synthesis of 18F-labelled stilbenes. Stilbene 7 is now accessible within 80 min in 30–45% overall radiochemical
yield starting from [18F]fluoride.
� 2008 Elsevier Ltd. All rights reserved.
Positron emission tomography (PET) is a powerful non-
invasive method for the imaging and quantification of
physiological and biochemical processes in vivo.

The wide scope of physiological targets of interest suit-
able for diagnosis, planning and monitoring of therapeutic
interventions by means of imaging has led to an increasing
search for new radiopharmaceuticals. Due to its broad
availability, its low positron energy (Emax = 635 keV) and
half-life (t1/2 = 109.7 min),1,2 no-carrier-added (n.c.a.) fluo-
rine-18 is the most commonly used PET isotope. Although
favoured by these advantages, chemical synthesis and
incorporation of fluorine-18 into the target molecule in rea-
sonable overall reaction times (ideally less than 2 h) often
remains the key obstacle for the development of new
radiopharmaceuticals.

In this study, we report on the radical [18F]fluoroaryla-
tion of different olefins using 4-[18F]fluorobenzenediazo-
nium ions to provide a new route to radiopharmaceuticals
containing a deactivated, 4-[18F]fluoro substituted phenyl
group.

Although well known for short reaction times, radical
chemistry has rarely been used for the synthesis of 18F-
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labelled radiopharmaceuticals. For example a photochem-
ically induced thiodediazonation reaction has been applied
for the synthesis of 18F-labelled S-aryl-cysteine.3 Inspired
by our recent work on reactions involving aryl radicals
and arenediazonium salts,4,5 we decided to evaluate the
applicability of the reductive Meerwein arylation for radio-
chemical syntheses.6 In this way, the incorporation of
radioactivity would be achieved by the addition of a 4-
[18F]fluorophenyl radical to a carbon-carbon double bond
of a suitable precursor molecule. For optimization, we first
reacted 4-fluorobenzenediazonium tetrafluoroborate 1 with
arecoline 2 under various conditions (see Supplementary
data). Commercially available titanium(III)-chloride in
dilute hydrochloric acid is known to be a suitable reductant
for arenediazonium salts.5,6 Due to the basic nitrogen atom
in the structure of arecoline (and the other substrates
described below), no additional co-solvent is necessary to
reach high concentrations of the olefinic substrate in the
reaction mixture. To ensure complete conversion of the
arenediazonium salt at reasonable excess of titanium(III)
and in reaction times of less than 20 min, we raised the
reaction temperature to 45 �C. The optimized conditions7

were then further applied to ecgonidine methylate (3) and
styrenes 4a and 4b (Scheme 1).8 A summary of the results
is given in Column 2 of Table 1. The 4-arylpiperidine 5,
which is a valuable starting material for the synthesis of
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Scheme 1. Fluoroarylation of arecoline 2, ecgonidine methylate 3 and
styrenes 4a and 4b.

Table 1
Chemical and radiochemical fluoroarylation of arecoline 2, ecgonidine
methylate 3 and styrenes 4a and 4b

Substrate Product,
yielda (%)

Product, radiochemical
yield (%)

Arecoline 2 5, 54b [18F]-5, 613d,b

Ecgonidine methylate 3 6, 51c [18F]-6, 616d

Chlorostyrene 4a 7, 28 —
Bromostyrene 4b 7, 32 [18F]-7, 60–70e

a Reactions according to general procedure. Isolated yields.
b Diastereoselectivity: trans:cis = 58:42 (non-radioactive), trans:cis =

50:50 (radioactive).
c Diastereoselectivity >80% (43% of 2b,3a-isomer, 8% for remaining

three isomers).
d Reaction time:10 min.
e Reaction time: 5 min.
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the anti-depressive drug paroxetine,9 as well as the (2b, 3a)-
aryltropane 6, which has been found to have high affinity
(21 nM) for the dopamine transporter (DAT),10 were
accessible in synthetically useful yields, the latter even with
remarkable diastereoselectivity. Hydrogen abstraction
from arecoline and ecgonidine methylate, leading to the
formation of fluorobenzene, was determined to be the main
competing process.11 We therefore found it surprising that
the experiments with both styrenes 4a and 4b, which do not
bear easily abstractable hydrogen atoms, gave significantly
lower yields. Styrenes 4a and 4b were chosen since stilbene
7 is an important lead structure for Alzheimer plaque
imaging.12

In contrast to the preliminary experiments described
above, syntheses of no-carrier-added radiopharmaceuticals
are usually performed on a much smaller scale (usually lM
for the labelling precursor and pM for fluorine-18). The
yields obtained for the ‘cold’ syntheses therefore do not
necessarily allow a prediction for yields obtained for radio-
active syntheses. Based on the literature-known prepara-
tion of 4-[18F]fluorobenzenediazonium salts4,13 and the
procedure developed for the non-radioactive synthesis, we
then investigated the [18F]fluoroarylation under radio-
chemical conditions. The results obtained with the opti-
mized protocol are summarized in Column 3 of Table
1.14 Although a variety of variations regarding reaction
time, temperature and excess of substrates were investi-
gated, suppression of hydrogen abstraction from arecoline
2 and ecgonidine methylate 3 could not be achieved. Con-
sequently, [18F]fluorobenzene was formed in up to 60%
yield (see Supplementary data).

In contrast to the fluoroarylation of arecoline 2 and
ecgonidine methylate 3, where significantly lower yields
were obtained for radiosyntheses compared to ‘cold’ syn-
theses, the small reaction scale and the increase in substrate
equivalents turned out to be beneficial for the formation of
stilbene 7. Radiochemical yields of up to 70% were
observed after reaction times of only 5 min.15 The opposed
behaviour of arecoline 2 and ecgonidine methylate 3 com-
pared to bromostyrene 4b in the radiochemical experiments
is most probably due to undesired hydrogen abstraction by
the aryl radical. In the non-radioactive optimization exper-
iments with arecoline, only a minor increase in yield (from
50% to around 60%) was found when the amount of arec-
oline was doubled from 2.5 to 5 equiv, since the side reac-
tion also benefits from higher substrate concentrations.
Experiments with bromostyrene 4b gave a comparatively
larger relative increase in yield from 21% to 32% when con-
ducted with four instead of two equivalents. In conclusion,
substrates which undergo no specific side-reactions (e.g.,
hydrogen abstraction from allylic positions, radical addi-
tion to an alternate functional groups) are much more
likely to benefit from the manifold excess in radiochemical
syntheses. In the case of stilbene 7, the dramatic increase in
equivalents made a synthetically low-yielding process
become an efficient method in radiochemistry.

In combination with the preparation of the intermediate
4-[18F]fluorobenzenediazonium salt, the Alzheimer plaque
imaging reagent 7 is now accessible in 80 min total reaction
time with overall radiochemical yields of 30–45% (decay
corrected) starting from [18F]fluoride, which is the superior
to the previously reported procedures.16

In summary, the first successful application of aryl rad-
icals for the synthesis of radiopharmaceuticals is reported
and exemplified for the production of 18F-labelled stilb-
enes, one class of Alzheimer imaging agents. Exploiting
the characteristics of earlier aryl radical reactions under
comparable conditions, this methodology should be insen-
sitive towards many functional groups (e.g., amino groups,
hydroxyl groups, carboxylic acids, nitriles and ketones),5,6

and opens a new route to radiopharmaceuticals not avail-
able with commonly used approaches. Furthermore, based
on the experiences with 18F-substituted, deactivated aro-
matic systems it can be assumed that radiopharmaceuticals
synthesized by this methodology will show excellent stabil-
ity towards defluorination in vivo.
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